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ABSTRACT Recent research has revealed that using machine learning systems for the analysis of
genetic data could reliably detect Alzheimer’s disease. The interpretability of these models, however,
has been a challenge, as they frequently provided little insight into the features that contribute to their
predictions. Explainable machine learning has been presented as a solution to this problem since it enables
the identification of significant attributes and gives a clearer method of making predictions. In this study,
Genome-Wide Association Studies were used to recognize genetic variants associated with Alzheimer’s
disease, utilizing the Alzheimer’s Disease Neuroimaging Initiative dataset and quality control methods to
ensure the validity and reliability of the findings. The results indicate strong connections between certain
genetic variations and Alzheimer’s disease, highlighting the potential of Genome-Wide Association Studies
as a valuable tool for identifying and predicting this disease. After studying and analyzing the genetic data,
machine learning algorithms are utilized to train a model to detect Alzheimer. The Support Vector Machine
achieved 89% accuracy as the best-performing model. Explainable machine learning has the potential
to increase the accuracy and interpretability of Alzheimer’s disease detection models, giving significant
insights for both academics and physicians. The explanation of the support vector machine model reveals
that rs4821510 is the most important SNP in detecting AD. On top of that, the SHAP method shows that
rs429358 is an indication for Alzheimer’s disease and rs4821510 presents in the healthy ones. These findings
suggest that explainable machine learning can play an important role in accurately detecting Alzheimer’s
disease and identifying critical genetic markers associated with the disease.

INDEX TERMS Alzheimer, artificial intelligence, GWAS, quality control, XAI.

I. INTRODUCTION

Alzheimer’s disease is a progressive, neurodegenerative brain
disorder that affects memory, thinking skills, and the capabil-
ity to carry out daily activities [1]. The disease is recognized
by a gradual loss of memory and basic life skills such as
eating, bathing, and talking [2]. Symptoms of Alzheimer’s
disease include memory loss, paranoia, depression, anger,

aggression, anxiety, apathy, loneliness, and psychosis [2].
Alzheimer’s disease is the most common cause of demen-

tia, representing around 70% of all cases [3]. The disease
usually affects individuals over the age of 65, with symptoms
appearing in their mid-60s [3]. However, a rare form of
the disease, known as early-onset Alzheimer’s, can occur in
individuals between their 30s and mid-60s [3]. Alzheimer’s
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disease affects an estimated 6.5 million Americans aged 65
and older today [4]. Alzheimer’s disease and dementia cases
are on the rise in the United Arab Emirates (UAE) as well.
It is forecasted that the UAE will see a significant increase
in dementia cases, with a predicted 1,795 percent rise by the
year 2050 [5]. This is one of the second-highest percentage
increases in dementia cases globally. The neighboring Gulf
countries, such as Qatar and Bahrain, are also expected to
experience similar trends.

If no medical breakthroughs are made to prevent, cease, or
cure Alzheimer’s disease, this figure might rise to 13.8 mil-
lion by 2060 [4]. A recent survey conducted by the American
Alzheimer’s Association [6] identified many impediments
to consumers’ awareness of Mild Cognitive Impairment
(MCI), a condition that may raise the chance of acquiring
Alzheimer’s disease. According to the report, Americans
are unaware of MCI and are hesitant to seek medical help.
The report also projects that total expenses for healthcare,
long-term care, and hospice services for those 65 and older
with dementia in 2022 will be $321 billion. As the disease
progresses, it can lead to moderate to severe cognitive im-
pairment, affecting areas of the brain that control languages,
reasoning, conscious thought, and sensory processing, such
as the ability to correctly detect sounds and smells [7].
Memory loss and confusion also worsen, and people with
Alzheimer’s disease may have difficulty recognizing family
and friends [7].

Understanding the early signs and symptoms of
Alzheimer’s disease can help with early diagnosis and treat-
ment. Ongoing research is aimed at identifying the underly-
ing causes of the disease and developing effective therapies
to slow or stop its progression with the aid of Artificial In-
telligence (AI) [8]. AI is used to detect Genetic Alzheimer’s
Disease for a variety of reasons. One important reason is drug
delivery, where AI plays a crucial role in repurposing existing
drugs for AD treatment [9]. It can quickly analyze large
amounts of data, such as transcriptomics, molecular struc-
tures, and clinical databases, to predict drug repurposing.
This offers a fast and cost-effective way to develop drugs [9].
In addition, AI contributes significantly to genetic research
on AD. It helps with the diagnosis, prognosis, and analysis
of genetic data related to AD. This includes studying genetic
variation, gene expression profiles, gene-gene interactions,
and utilizing knowledge bases for genetic analysis [10].

For instance, Rs429358 and rs4420638 are two common
polymorphisms located within the APOE gene, which en-
codes apolipoprotein E (APOE), a protein involved in lipid
transport and metabolism in the brain. Numerous studies
have identified these variants as strong genetic risk factors
for AD. Specifically, the ϵ4 allele of rs429358 and the ϵ2
allele of rs4420638 have been consistently associated with an
increased and decreased risk of developing AD, respectively
[11].

Before designing an AI model, the significant variants in
the genome should be known. GWAS stands for Genome-
Wide Association Studies, which is a research approach used

to identify genomic variants related to a certain disease or
a specific trait [12]. GWAS identifies genomic risk loci,
which are sets of correlated single nucleotide polymorphisms
(SNPs) that exhibit a statistically significant association with
the disease or trait under investigation [13]. These studies
have gained tremendous interest in finding specific genes
that predispose individuals to common disease traits, most
of which follow complex inheritance patterns rather than
Mendelian patterns. In order to perform the genome associ-
ation analysis, PLINK, a software package used for GWAS
and other types of genetic analyses [14].

AI is transforming the healthcare industry due to the
rising availability of unstructured and structured data and
the rapid development of analytical methodologies [15]. As
AI becomes more important in healthcare, there are grow-
ing worries about a lack of transparency and explainability,
as well as potential bias in model projections. AI can be
used to improve Alzheimer’s detection and diagnosis while
also minimizing overtreatment. However, merging AI with
Machine Learning (ML) techniques allows for predictions
and more precise decision-making. Harvard University re-
searchers [16] have built a deep learning model that can
predict Alzheimer’s disease from brain scans with excellent
accuracy, even in cases of the early start. The AI model
was trained on a massive dataset of MRI scans and genetic
data from Alzheimer’s sufferers and healthy controls. The
study showed that AI has the potential to improve early
identification and diagnosis of Alzheimer’s disease.

This work aims to contribute to AD research by integrating
ML systems with GWAS to reliably detect and predict the
disease. It addresses the challenge of interpretability in ML
models by employing explainable ML techniques, shedding
light on the features contributing to predictions. Using the
Alzheimer’s Disease Neuroimaging Initiative dataset and
rigorous quality control methods, the study identifies strong
connections between specific genetic variants and AD, high-
lighting the potential of GWAS in disease detection.

The remainder of this report is structured as follows:
Section II represents the related works of using AI to detect
Alzheimer’s. AD GWAS dataset is described in Section III.
Sections IV and V discuss the genome-wide association stud-
ies and quality control procedure, respectively. The concept
of XAI is discussed in Section VI. The methodology for
achieving the aim of the work is described in Section VII. The
results of performing quality control procedures, GWAS, and
ML-model evaluation are presented in Section VIII. Finally,
conclusions and future work are summarized in Section IX.

II. LITERATURE REVIEW
In this section, some related works of Alzheimer’s detection
using ML are discussed. Abbas et al. [16] tried to iden-
tify biomarkers-related AD SNPs in order to design a deep
learning-based model for AD classification. They trained
convolutional neural networks (CNNs) on a GWAS dataset
obtained from the AD neuroimaging initiative. Subsequently,
deep transfer learning was applied to further train the CNN
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as a base model on a separate AD GWAS dataset, leading
to the extraction of a final set of features. These extracted
features were then utilized as inputs for a Support Vector
Machine (SVM) to classify AD. Extensive experiments were
conducted using multiple datasets and different experimental
setups. The statistical analysis revealed an accuracy of 89%
for the classification of AD.

M. Menagadevi [17] proposed an Alzheimer’s disease
detection method that combines multiscale pooling resid-
ual autoencoder and Support Vector Machine (SVM) for
analysis. It utilizes image datasets from Kaggle and ADNI,
enhancing images through modified optimal curvelet thresh-
olding and Octagon histogram equalization with black-and-
white stretching. The multi-scale pooling residual autoen-
coder extracts relevant white matter features. For classifi-
cation, Support Vector Machine (SVM), Extreme Learning
Machine (ELM), and K-nearest neighbors algorithm (KNN)
are employed. Notably, SVM demonstrates outstanding per-
formance with an impressive accuracy rate of 99.77% for
the Kaggle dataset and 98.21% for ADNI, highlighting its
efficacy in Alzheimer’s disease classification.

Abd El Hamid et al. [18] utilized Naive Bayes, K2 learn-
ing algorithms, and tree-augmented Naive Bayes. for the
early detection of Alzheimer’s disease. Based on genetic
data from the Alzheimer’s disease neuroimaging initiative
phase 1 dataset, 500 SNPs were used to achieve the highest
classification accuracy according to the p-value requirement,
which equals 0.05. Overall accuracy for the Naive Bayes and
K2 learning algorithms was 98% and 98.4%, respectively. A.
Alatrany et al. [19] developed and assessed a deep learning
model for Alzheimer’s prediction using genetic informa-
tion from 188 controls and 176 AD patients. The model
achieved an area under the curve (AUC) of 0.93 and 0.09
using multilayer perceptron and convolutional neural net-
works, respectively. The same authors concentrated on using
a layered Machine Learning (ML) based model to categorize
Alzheimer’s patients. The model was evaluated using all of
the AD genetic data from ADNI-1 which is the first part of
the neuroimaging experiment. With an overall accuracy of
93.7%, the authors claim that the stacked model performed
better than conventional machine learning techniques. They
indicated that stacking methods are successful in identifying
Alzheimer’s disease.

In order to forecast a patient’s probability of developing
AD, Araujo et al. [20] proposed the use of physiologically
motivated SNP selection as a data point in RF. Their research
indicates that SNPs can be effective as data points in RF for
predicting AD risk. Importantly, the authors found that these
selected SNPs, even if they are not directly linked to the
disease, perform better than SNPs that are associated with
AD. To identify SNPs associated with AD in a GWAS data
set of 550 healthy and 861 diseased, two unique approaches
were developed by N. Briones and V. Dinu [21]. In the first
method, the authors utilized logistic regression to filter the
data by applying a predetermined p-value threshold, produc-
ing a block of SNPs that were then used in a multi-locus study

using random forest, while using biological data and logistic
regression analysis to pre-select loci for input into the RF
classifier in the second technique. The first method yielded
199 SNPs. These SNPs, along with other SNPs linked to
AD, were used to create a predictive subgroup for AD pre-
diction. Utilizing 10-fold cross-validation in random forest
(RF) modeling, the average error rate for AD prediction was
determined to be 9.8%.

GenEpi, a computational tool that uses L1-regularized
regression to identify epistasis associated with phenotypes,
was introduced by Chang et al [22]. For the purpose of de-
termining both within-gene and cross-gene epistasis, GenEpi
employs a two-stage modeling methodology. On the basis of
364 people’s genetic information, the ML model was trained
and assessed. The final model made use of 24 SNPs overall,
spread across 12 genes. The model demonstrates a leave-
one-out cross-validation accuracy of 0.83 and a 2-fold cross-
validation accuracy of 0.83. Cooper et al. [23] evaluated the
anticipated performance and efficacy of a Bayesian approach
to several conventional ML techniques using a GWAS dataset
of AD that consists of 312,318 SNPs of 1411 participants.
The findings indicate that the Bayesian algorithm achieves
comparable prediction results to conventional methods while
exhibiting a reduced training time requirement.

Oriol et al. [24] used FRESA.CAD (Feature Selection
Algorithms for Computer Aided Diagnosis) to predict the
hereditary risk of developing AD. It is a benchmarking
tool that works by building and assessing a number of ML
models, such as Least Absolute Shrinkage and Selection
Operator (LASSO), Bootstrap Stage-Wise Model Selection
(BSWiMS), and Recursive partitioning and regression trees
(RPART). The range of the AUC value was from 0.6 to 0.7.
The ensemble of techniques performed best, with a receiving
operation curve (ROC) score of 0.719, and was competitive
with the BSWiMS, LASSO, and RPART.

Based on a selection of the 21 variants most closely asso-
ciated with AD, in [25], SVM classifiers of multiple kernels
were applied to the ADNI data using the correlation-based
and chi-squared approaches. The findings demonstrate that
an RBF kernel-based SVM-trained model has a maximum
accuracy of 76.70%. To determine if the data used to de-
scribe one dataset could be successfully used to categorize
a completely other patient group dataset, the authors [26]
conducted two different types of experiments. In the first
experiment, the authors used features chosen from the initial
dataset to train a random forest classifier. The second dataset
is used to assess the model results. Subsequently, the authors
employed the selected SNPs locations to construct a novel
random forest model using the second dataset. The feature
selection process for the second dataset was conducted based
on the training subset of the first dataset, focusing on relevant
features. Patients from the second dataset, who had not been
used in training the tested, classifier were used in both tests to
assess the performance of the final classifier. In comparison
to the results obtained from using a single dataset, both ex-
periments demonstrated a slight reduction in the AUC values.

VOLUME 4, 2024 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3410135

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



T. Khater et al.: Explainable ML Model for Alzheimer Detection Using Genetic Data: A Genome-Wide Association Study Approach

However, the AUC values remained significantly above 0.5,
implying that all the models retained valuable information
regarding genetic distinctions between Alzheimer’s disease
cases and controls.

In order to choose a subset of SNPs for GWAS, Nguyen
et al. [27] suggest a new two-stage random forest technique
called ts-RF. It has been discovered that the suggested tech-
nique is effective at locating educational sets of SNPs that
may be connected to illnesses. Other works [28] demon-
strated a novel technique for the analysis of AD using GWAS
that combines both enrichment analysis and random forests
to identify new genetic variants or biomarkers based on data
from 527 controls and 117 cases. Romero et al.

The study in [29] proposed a deep-learning model that can
find interactions between SNPs. The Deep Mixed Model is
made up of two parts: the first part uses a CNN to account for
confounding factors, while the second part uses an LSTM to
pick genetic variations. Rosales et al. [30] compared three
ML models: genetic algorithm, stepwise, and L1- regulariza-
tion techniques (LASSO) for building models for predicting
Alzheimer’s disease based on data from 813 diseased and
1,017 healthy. LASSO models fared better than the other two
methods in predicting whether the patients have AD or not.

Sherif et al. [31] devised a framework for comparing
various Bayesian network methods (naive Bayes, Markov
Blanket (MB), tree-augmented naive Bayes, and minimal
augmented Markov blanket). For naive and tree-augmented
naïve networks, a total of 435 were regarded as predictors.
However, using only 11 and 13 SNPs for the minimum
augmented MB and Markov blanket training and testing,
respectively, demonstrated improved accuracy. AD was pre-
dicted using the model-averaged naive Bayes (MANB) ap-
proach by Wei [32]. On the basis of 1411 people’s genetic
data, the models were trained and tested. The model outputs
were compared with the results obtained from a naive Bayes
classifier. Despite having a similar training time, the model
achieved a significantly higher AUC of 0.72, whereas the
naive Bayes classifier yielded an AUC of 0.59.

Stokes et al. [33] evaluated the effectiveness of label
propagation (LP), a multivariate graph-based method in order
to efficiently rank SNPs in genome-wide data. The top-
ranked SNPs were assessed based on classification accuracy
and prior evidence linking them to AD. Compared to other
control approaches, LP scored significantly better at catego-
rization. Among the 25 top-ranked SNPs discovered by LP,
14 were found in one dataset and had evidence in linking
them to AD.

III. AD GWAS DATASET
The inclusion criteria for participants in this study con-
sisted of the following factors: a) self-reported European
ethnicity, b) adherence to the standards set by the National
Alzheimer’s Coordinating Centre, and c) confirmation of
late-onset Alzheimer’s disease (AD) by board-certified neu-
ropathologists for cases, while controls exhibited no neu-
ropathology. Moreover, participants aged 65 years and above

were selected for inclusion. All cases and controls underwent
plaque and tangle assessment, which are distinctive struc-
tures affecting brain cells and potentially contributing to the
pathophysiology of the disease. Samples with a history of
stroke, Lewy bodies, or any other neurological disorder were
excluded from the analysis.

The final dataset comprised 191 males and 173 females,
with a total of 176 cases and 188 controls, each possess-
ing genotyping information for 502,627 single-nucleotide
polymorphisms (SNPs). Genotyping was performed on the
DNA of participants using the Affymetrix GeneChip Human
Mapping 500K Array Set. The onset of AD can be early or
late and every type has its own genes. For instance, early-
onset AD is caused by mutations in Presenilin 1 (PS1),
Presenilin 2 (PS2), and Amyloid precursor protein (APP).
On the other hand, late-onset AD results due to changes in
the APOE gene, microtubule-associated protein tau (MAPT)
gene, and tumor necrosis factor (TNF) gene. The APOE gene
has 3 forms including APOE2, APOE3, and APOE4. The
significant SNPs that cause the variation in the APOE gene
are rs429358 and rs7412, which have the T or C allele. The
AD GWAS dataset is mainly focused on late-onset AD.

IV. GENOME-WIDW ASSOCIATION ANALYSIS
SNP studies, a type of GWAS, examine the phenotypic
impact of tiny genetic variants. While some approaches for
GWAS analysis concentrate on phenotypic risk prediction
based on the available genetic data [34] [35], others attempt
to interpret these risk effects by highlighting which SNPs are
influencing a particular trait [30]. In order to find SNPs con-
nected to the phenotype under research, this study combines
both of these objectives and applies a deep learning-based
prediction algorithm in conjunction with statistical analysis.
GWAS is a study design used to identify genetic variants
associated with common human diseases and traits, such
as heart disease, type 2 diabetes, and psychiatric disorders
[36]. The experimental procedure of a GWAS encompasses
collecting DNA and phenotypic information from a cohort
of individuals, including information on disease status and
demographic characteristics [37]. GWAS analyzes hundreds
of thousands to millions of SNPs across the genome to
identify genetic variants associated with a trait [37].

A variety of applications can make use of the GWAS
results. In order to address potential confounding genetic
group differences, it is common practice in epidemiological
studies to incorporate trait-associated genetic variants as
control variables. This helps to account for any potential
biases that may arise from these genetic differences [38].
Additionally, based on a person’s genetic profile, the results
can be used to predict their risk for contracting physical
and mental diseases. In fact, a recent study demonstrated
that the prediction methods of the monogenic risk based
on uncommon, highly penetrant mutations are just as ef-
fective at predicting disease risk. Genomic risk prediction
methods make use of genome-wide polygenic risk scores
(PRSs) for various conditions, including atrial fibrillation,
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coronary artery disease, inflammatory bowel disease, type 2
diabetes, and breast cancer. These PRSs are calculated based
on comprehensive genetic information obtained from across
the genome and are employed to estimate an individual’s
predisposition or susceptibility to these specific diseases.

A. GWAS CONDUCTING
a: SELECTING STUDY POPULATIONS
To uncover replicable genome-wide significant associations,
GWAS may require very high sample sizes and the de-
sired sample size can be computed using power estimates
in software programs such as CaTS14 or GPC15. When
the characteristic of interest is dichotomous, different study
designs can be employed. One approach involves including
both cases and controls, allowing for a comparison between
individuals with and without the trait. Alternatively, in cases
where the trait is quantitative, quantitative measures can be
collected for the entire study population to assess variations
and associations with the characteristic of interest. Further-
more, there are other approaches including population-based
and family-based designs. The desired size of the sample, the
experimental topic, and the availability of pre-existing data
or the feasibility with which new data can be obtained all
influence the selection of data resources and research design
for conducting the GWAS. GWAS can be carried out utiliz-
ing diverse data sources such as biobanks, disease-focused
cohorts, population-based cohorts, or direct-to-consumer sur-
veys. Recruitment tactics must be carefully evaluated for
all study designs because they can cause collider bias and
other types of bias in the resulting data [39]. One example
of a widely used study cohort is the UK Biobank, which
adopts a volunteer-based recruitment strategy. As a result,
participants in the UK Biobank cohort tend to exhibit better
health, higher socioeconomic status, and higher educational
attainment compared to the general population.

b: GENOTYPING
Individuals are often genotyped using microarrays for com-
mon variations or next-generation sequencing technologies
such as WES (whole-exome sequencing) or WGS (whole-
genome sequencing) for rare variants. Due to the current
expense of next-generation sequencing, microarray-based
genotyping is the most often utilized approach for acquiring
genotypes for GWAS. However, the choice of genotyping
platform is influenced by a variety of criteria, including the
objective of the GWAS; for instance, WGS, which deter-
mines nearly every genotype of a whole genome, is favored
above WES and microarrays and is projected to become the
method of choice in the coming years as low-cost WGS
technology becomes more widely available [40].

c: DATA PROCESSING
Individual ID numbers, sex, coded family relations be-
tween individuals, covariates, phenotype information, geno-
type calls for all called variants, and genotyping batch in-
formation are all included in GWAS input files. Following

data input, producing accurate GWAS results necessitates
precise quality control procedures. Testing for associations:
The biometrical model explains the genetic association the-
ory (for further information, see Supplementary Note). In
GWAS, associations are often tested using linear or logistic
regression models, depending on the nature of the phenotype
being investigated. Linear regression models are commonly
employed for continuous phenotypes such as height, blood
pressure, or body mass index. On the other hand, logistic
regression models are utilized for binary phenotypes, such as
determining the presence or absence of disease [40]. In order
to address stratification and mitigate potential biases stem-
ming from demographic factors, adjustments are made by
including covariates like age, gender, and ancestry. However,
it’s important to note this may reduce the statistical strength
when dealing with binary traits in selected study samples.
[40].

d: ACCOUNTING FOR FALSE DISCOVERY
To avoid false positives, examining millions of connections
between individual genetic variations and a phenotype of
interest necessitates a strict multiple-testing threshold [40].

V. GWAS QUALITY CONTROL
Quality control (QC) [41] is a critical step in any genetic
study that involves collecting, processing, and analyzing bio-
logical samples. It is the process of verifying and ensuring the
quality and integrity of the data obtained from these samples.
In genetic studies, quality control involves a series of steps
that are performed to identify and remove low-quality or
unreliable data points. This includes detecting and correcting
errors in genotyping data, identifying, and removing outliers,
checking for sample contamination, and ensuring that the
data conforms to standard quality metrics. Common quality
control procedures in genetic studies may include:

• Removing samples with a low genotyping rate or high
missing data rates.

• Removing samples with unexpected genetic ancestry or
relatedness.

• Removing SNPs with low call rate or high missing data
rates.

• Removing SNPs with significant deviation from Hardy-
Weinberg equilibrium (HWE).

• Checking for and removing duplicates or samples with
low DNA quantity or quality.

• Removing SNPs with batch effects or systematic tech-
nical errors.

• Performing population stratification analysis to detect
and remove outliers.

In [42], the authors detail a comprehensive description of
the steps involved in data quality assessment and control
during case-control association studies. The steps described
involve the identification and elimination of DNA samples
and markers that may introduce bias. Before statistically
testing for the association, these crucial procedures are im-
portant for successfully conducting the case-control study.
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They explained how to make assessments of failure rate per
individual and per SNP as well as how to gauge the degree
of relatedness between individuals using PLINK, a program
for managing SNP data. They also go through other quality-
control techniques, such as the use of SMARTPCA software
to find ancestor outliers. The aim of quality control in genetic
studies is to ensure that the data is reliable, consistent, and
unbiased and that the results obtained from the data are valid
and accurate. Proper QC procedures can improve the statis-
tical power of the study, minimize false positives and false
negatives, and increase the reproducibility of the findings. In
summary, quality control is a crucial step in genetic studies
to ensure that the data is of high quality and to minimize the
risk of bias or errors that can affect the results of the analysis.

In this work, we performed population stratification anal-
ysis to identify and remove outliers, ensuring that our dataset
accurately represented the genetic ancestry of the study pop-
ulation. Additionally, we checked for and removed duplicates
or samples with low DNA quantity or quality, further enhanc-
ing the reliability of our dataset.

Importantly, each QC step had a direct impact on the size
of the final dataset. By removing low-quality samples or
SNPs, we ensured that only high-quality data points were re-
tained for downstream analysis. While these QC procedures
resulted in a reduction in dataset size, they were essential for
maintaining data integrity and minimizing the risk of bias or
errors that could affect the validity of our findings.

VI. EXPLAINABLE ARTIFICIAL INTELLIGENCE
Explainable artificial intelligence (XAI) [43] is a set of
approaches and strategies for explaining the consequences of
ML model building in a way that humans can understand.
The question is why explainable Machine learning is needed
and why it is so important [44]. The response to "What is
the accuracy" could be useless without the addition of "why
we get this accuracy”, therefore this is the interpretation of
how the model produces the results. Three main applications
of machine learning models that often involve prediction and
require interpretability are model debugging, model valida-
tion, and knowledge discovery.

XAI has 2 main approaches including the intrinsic ap-
proach and the model agnostic one. In the intrinsic technique
the internal parameters of the model are utilized to get
explanations. On the other hand, the model agnostic approach
is mainly for black box models and the internal parameters
are unkown. There are various types of explanations such as
intrinsic or post hoc, model-specific or model-agnostic, and
global or local explanations. Model-agnostic methods [45]
are powerful techniques for generating explanations without
relying on the internal workings of machine learning (ML)
models, which can often be opaque or difficult to interpret.
One key advantage of these methods is their ability to be
applied to any ML model, irrespective of its architecture or
complexity. This versatility allows researchers and practition-
ers to employ model-agnostic methods across a wide range
of ML models, enhancing transparency and interpretability

in the decision-making process. One example of a model-
agnostic approach [46] is feature importance analysis.

Feature importance refers to the process of identifying the
most significant features or variables that contribute to the
performance of a model. There are many different methods
for feature importance analysis, such as permutation feature
importance, mean decrease impurity, and SHAP values and
these techniques can be applied to any model regardless of
the specific algorithm used. Permutation importance allows
the identification of the most important features [44]. It is
based on shuffling the values of a feature and repeating the
prediction while monitoring the error. If the error worsens,
this means that this feature is important and highly impacts
the prediction. Hence, the more important the specific fea-
ture, the more the predictions will worsen because of the
shuffling. Hence, this method ranks the SNPs in our data from
the most important one to the least important.

A partial dependence plot (PDP) offers insights into how
specific features influence predictions. It is a graphical rep-
resentation illustrating the relationship between one or more
input variables and the output target. By examining a PDP,
we can discern how alterations in predictions are influenced
by the most significant features. From the PDP plots, we can
know if there is a linear relationship between the predicted
AD and any one of the SNP genotype values. In addition,
interact PDP helps in this framework by investigating the
interaction between two SNPs and their effect on the model
prediction.

Furthermore, Two widely used methods for model inter-
pretability and explainability in machine learning are SHAP
(Shapley Additive explanations) and LIME (Local Inter-
pretable Model-agnostic Explanations) [47]. The way LIME
works is to first pick a sample to interpret. The objective is
to repeatedly test the model to understand how it generates
the prediction for the selected example [47]. LIME produces
local explanations by locally approximating the model using
a simpler model (such as a linear model) and manipulating
the input data to observe how the output changes. This
method can be applied to any model because it is model-
agnostic. The global behavior of the model or interaction
between characteristics is not taken into account by LIME,
which only offers local explanations, unlike SHAP which
provides global explanations. SHAP explanations are a pop-
ular feature-attribution technique for explainable AI. They
quantify the impact of specific features on the forecast of a
machine-learning model using ideas from game theory [48].

By incorporating SHAP and LIME methods into our
framework, we aim to provide both global and local insights
into the predictions of our ML model for Alzheimer’s disease
detection. These explanations can enhance the interpretabil-
ity of the model’s decisions, foster trust in its predictions,
and facilitate further research into the underlying genetic
factors contributing to the disease. Fig 1 depicts the complete
process of building the ML model starting from training the
model followed by the evaluation of the model and ending
with the interpretation of the results This framework serves
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FIGURE 1: Simple workflow for developing an AI model.

as a valuable guide for researchers and practitioners in the
field of ML to build robust and accurate models.

VII. METHODOLOGY
The methodology for detecting Alzheimer’s disease using
ML based on genetic data can be summarized in the follow-
ing steps:

1) Data Collection: The first step is to collect genetic data
of individuals that includes their DNA sequencing, Sin-
gle Nucleotide Polymorphism (SNP) data, and clinical
information of Alzheimer’s disease.

2) Quality Control: The raw genetic data undergoes a
series of QC checks to ensure that the data is reliable and
accurate. QC steps may include filtering out SNPs with
low call rates, removing individuals with high rates of
missing genotype data, checking for population stratifi-
cation, performing identity-by-descent (IBD) analysis to
identify cryptic relatedness, and calculating the Hardy-
Weinberg Equilibrium (HWE).

3) Genome-wide Association Study (GWAS): GWAS
analysis is performed to identify genetic variants that are
associated with Alzheimer’s disease. GWAS analysis
involves testing millions of SNPs across the genome for
association with the disease. SNPs that reach genome-
wide significance are then considered for further analy-
sis.

4) Data Preprocessing: Preprocessing the data includes
cleaning, normalization, and transformation of genetic
data. The QC data needs to be preprocessed and for-
matted to remove errors, and inconsistencies and reduce
noise. This step is critical as the quality of the data
directly impacts the performance of the ML model.

5) Feature Selection: The next step is to select the relevant
features from the genetic data that can help in the de-
tection of Alzheimer’s disease. Feature selection can be
performed using statistical methods or domain knowl-
edge. This process helps in reducing the dimensionality
of the data, which improves the efficiency and accuracy
of the ML algorithm. In this work, the Top 25 SNPs are
selected to train our ML model. By focusing on these
SNPs, we prioritize the inclusion of features that have
shown the strongest evidence of association with AD
risk. Then, we ended up with 364 patients with 25 SNPs
as features. Out of the 364, 190 are control (without AD)
and 174 are cases (with AD).

6) ML Model Selection: The next step is to select the
appropriate ML algorithm that can effectively classify
individuals with or without Alzheimer’s disease based
on genetic data. Commonly used ML algorithms for
disease detection include SVM, Random Forest, and
Neural Networks.
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FIGURE 2: Complete Process of Building Alzheimer predictive AI Based-Model.

FIGURE 3: Manhatten plot.

7) Model Training: In this step, the ML algorithm is
trained using the preprocessed data with selected fea-
tures. The training process involves feeding the data
to the algorithm, and the algorithm learns the patterns
and relationships between the features and the output
(Alzheimer’s or non-Alzheimer’s).

8) Model Evaluation: The performance of the trained ML
model is evaluated using various performance metrics
such as accuracy, precision, recall, and F1-score. This
step helps in determining the effectiveness of the model
in detecting Alzheimer’s disease based on genetic data.

9) Model explanation: The model is interpreted using
model-agnostic methods to better understand the model
behavior.

10) Model Deployment: Finally, the trained ML model is
deployed for use in real-world scenarios. The model is
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aimed to be integrated with clinical diagnostic tools to
provide early diagnosis of Alzheimer’s disease and aid
in personalized treatment plans.

Predicting Alzheimer’s disease using ML based on ge-
netic data involves collecting and preprocessing the data,
performing QC checks, selecting relevant features, perform-
ing GWAS analysis, choosing an appropriate ML algorithm,
training the model, evaluating and interpreting its perfor-
mance, and deploying the model for use in clinical settings.
Fig 2 shows the flow chart for predicting AD based on genetic
data.

PDP for feature "rs4821510"
Number of unique grid points: 3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
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FIGURE 6: PDP for rs4821510 SNP.

VIII. SIMULATION RESULTS

This section presents the results obtained from the three
processes including quality control, genome-wide associa-
tion studies, and machine learning. The quality control and
GWAS procedures were performed using R software while
Python software was utilized to train and evaluate the ML
model.
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TABLE 1: Classification Results of AD Recognition.

Models Hyper - Parameters Precision F1-score Computational time

SVM
Kernal = Linear

C = 1 89.00% 0.89 0.016 s

RF
No. of estimators = 100

criterion = Gini 87.5% 0.88 0.103 s

MLP

No. layers = 4
Activation = ReLU

solver=’lbfgs’
Learning rate = 1e-5,

85% 0.85 0.0737

KNN
No. neighbours = 5
metric = Minkowski 97% 0.775 0.0009 s

LightGBM
No. of threads = 0
objective = binary 88 % 0.88 0.042 s

Adaboost
No. of estimators = 100
algorithm = SAMME 85% 0.85 0.1013 s

PDP interact for "rs4420638" and "rs429358"
Number of unique grid points: (rs4420638: 3, rs429358: 3)
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FIGURE 7: Interaction PDP plot for rs429358 and rs4420638
SNPs.

A. QC AND GWAS RESULTS

The results of the first step in the QC indicated that 4804
variants were removed due to missing genotype data and
375353 variants for 364 people passed the filter. Then, 33338
variants were removed due to the HWE test as well as
84025 variants because they have a minor allele frequency
which is less than 10%. Hence, 257990 SNPs for 364 people
remained. The step of checking the sex discrepancy revealed
that there are 5392 SNPs on the X chromosome and 0 SNP
on the Y chromosome which ensures that the data has both

men and women. On top of that, the other variants or SNPs
which are about 252490 are on autosomal chromosomes. The
final step in the QC is to remove the related variants and the
results showed that there are no related variants. Therefore,
the number of SNPs that will come under the association
test is 252490 SNPs. Next, an association test was conducted
to assess each SNP and assign a p-value. In this work, a
basic allele-based chi-squared association test was utilized
to find the association between the SNPs and Alzheimer’s
disease. In order to figure out the most significant SNPs,
the Manhattan plot was graphed to recognize the important
SNPs. Fig 3 shows the Manhattan plot and it reveals that two
SNPs pass the red line which means they passed the GWAS
significant threshold hence, these two SNPs, rs429358 and
rs4420638, are associated with AD. GWAS results show that
there is a linkage between these two SNPs, indicating a
higher likelihood of being inherited together.

B. ML MODEL PERFORMAMCE
The top 25 SNPs were selected for the 346 people to train
an ML model to predict AD. First, a correlation matrix is
performed to find the correlation between the SNPs. From
Fig 4, rs658024 is highly correlated with rs507667, and
rs780416 is highly correlated with rs12236440 as well. In
our study, the training and test data ratio was 80:20. Despite
the small dataset size, we believe this split ratio allowed us
to effectively train and evaluate our models while ensuring
sufficient data for testing. Furthermore, we conducted mul-
tiple experiments to ensure the robustness of our results and
verified the consistency of our findings across different runs,
and the results shown are not overfitted. Hence, Various ML
algorithms were used to train the model including SVM,
Random Forest, KNN, and XG-boost. The best-performing
model was SVM which achieved 89% accuracy. Table 1
summarizes the performance, hyperparameters, and compu-
tational time for all the used models.

The values for precision and F1-score suggest that the
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FIGURE 8: SHAP plot for the healthy (control) class.
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FIGURE 10: SHAP summary plot for the class 1 (Control)

SVM classification model is performing reasonably well for
both classes, with a relatively balanced performance between
precision and recall, as confirmed by the similar F1-score for

both classes. It is important to know that the performance of
a machine learning algorithm is affected by a variety of fac-
tors, such as data quality, feature selection, hyperparameter
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FIGURE 11: SHAP summary plot for the class 2 (Case)

tuning, and the evaluation measure utilized.

C. XAI RESULTS
To complete the cycle of machine learning, after getting the
ML results, explaining and interpreting the results should be
the final step. Model-agnostic methods including the permu-
tation importance method, LIME, and SHAP have been used
to provide explanations for the model outcomes. The Permu-
tation Importance Method offers a coarse measure of feature
importance, making it relatively easy to interpret but lacking
the detail provided by LIME and SHAP. LIME focuses on
local interpretations, making it suitable for understanding in-
dividual predictions, while SHAP offers both local and global
explanations, providing a more comprehensive view of model
behavior. However, SHAP’s insights, grounded in game the-
ory, may require additional expertise to interpret. In terms
of computational cost, the Permutation Importance Method
is computationally lightweight, while LIME and SHAP may
require more resources, especially for large datasets or com-
plex models. Thus, the choice of method depends on the
specific goals of the analysis and the desired level of detail
and interpretability. Combining multiple methods can offer
complementary insights and enhance the understanding of
model behavior.

Fig 5 shows that according to the shuffling of the values of
the features (genotype values) of the SNPS, rs4821510 is the

most important SNP for the SVM classifier in detecting AD.
In order to demonstrate the impact of the rs4821510 SNP on
the model behavior, a PDP is presented in Fig 6 which shows
that when the genotype varies from 0 to 2, the likelihood of
the model predicting the diseased class decreases.

As mentioned earlier, the analysis indicates that the SNPs
rs429358 and rs4420638 are likely inherited together, hence a
PDP interaction plot can show the results of such interaction.
Fig 7 depicts that when the genotype value of rs4420638 and
rs429358 is 2, representing the TT allele, the probability of
the model predicting the diseased class increases. Further-
more, the plot demonstrates that even when rs429358 is TT,
the ML model tends to predict AD cases regardless of the
genotype value of the rs4420638 SNP.

SHAP can produce local explanations for the ML results.
Therefore, we selected a single instance from the dataset with
a health class as a target as shown in Fig 8. It is clear that
when rs429358 SNP has a 0 genotyping value, the model
tends to predict the healthy class.

In Fig 9, the SHAP plot depicts that when rs429358 SNP
has a 1 genotype value, the model is likely to predict the
diseased class. SHAP produces global explanations for the
ML results using kernel explainer. The SHAP plot summary
in Fig 10 shows that rs4821510 SNP affects positively the
model detection of class 1 which is the health cases, unlike
the rs429358 SNP which affects negatively. This indicates
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that if the rs4821510 genetic variant is present, the model will
likely predict health cases. On the other hand, the presence of
rs429358 SNP relates to the diseased cases which is shown
in Fig 11.

As a result of this, we can identify genetic markers linked
to Alzheimer’s disease and utilize them to train the ML model
by applying GWAS and quality control. Considering the re-
sults and interpretations included in this study, this approach
is shown promising for enhancing Alzheimer’s identification
and may help in designing earlier therapies to enhance patient
outcomes.

While Permutation Importance Method provides valuable
insights into feature importance, multiple iterations may in-
crease runtime, presenting a limitation, especially for large
datasets [49]. Additionally, LIME’s applicability is restricted
to supervised Machine Learning and Deep Learning models,
limiting its versatility. On the other hand, global SHAP meth-
ods like KernelSHAP can be computationally slow due to the
need to compute Shapley values for numerous instances, pos-
ing a challenge, particularly for complex models or extensive
datasets [50]. These limitations underscore the importance
of considering computational efficiency and model compati-
bility when selecting interpretation techniques, ensuring that
the chosen method aligns with the specific requirements and
constraints of the analysis.

IX. CONCLUSION
AI and GWAS can be considered effective combination for
the prediction of AD. This paper presented the results of
a study that used quality control measures to improve the
ADNI dataset and GWAS techniques to identify genetic
variants associated with Alzheimer’s disease. The findings of
this study suggest that these methods can be used to iden-
tify new genetic targets for the development of treatments
for Alzheimer’s disease. The application of ML algorithms
on the dataset provided a method for identifying patients
with Alzheimer’s disease with high accuracy.An ML model
was trained to classify patients with Alzheimer’s disease
and healthy controls based on their genetic data. The best-
performing model was SVM, achieving 89% accuracy. The
results of applying XAI showed that rs4821510 SNP and
rs429358 SNP play an important role in the detection of
AD. A partial dependence plot demonstrates that as the
genotype ranges from 0 to 2, the probability of the model
predicting the diseased class diminishes. Additionally, the
interaction PDP plot indicates that when rs429358 is TT,
the ML model tends to predict AD cases irrespective of the
genotype value of the rs4420638 SNP. Moreover, the SHAP
method reveals that the presence of the rs4821510 genetic
variant strongly suggests that the model will predict healthy
cases, while the presence of the rs429358 SNP is associated
with diseased cases. These findings suggest that the combi-
nation of quality control, GWAS, and ML techniques can be
considered as powerful approach for detecting and predicting
Alzheimer’s disease, providing a potential avenue for earlier
diagnosis and treatment. However, future research should

focus on validating the findings across diverse populations
and integrating additional data sources to enhance predictive
accuracy. Prospective clinical studies are needed to assess the
real-world performance and feasibility of implementing the
model in clinical practice.
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